Spatialization Schemata for High-Order Source Directivity

GDIF/SpatDIF Meeting
Ircam, Paris, May 20-21, 2010

Andrew W. SCHMEDER ¹) and Markus NOISTERNIG ²)

¹) Center for New Music and Audio Technologies (CNMAT), Univ. of California, Berkeley
²) Acoustic and Cognitive Spaces Group, Ircam – CNRS, Paris
INTRODUCTION

MOTIVATION

“There is no such thing as nonspatial hearing: all musical hearing has an inherent spatial component, even if it is not noticed by the listener.”

- We consider space as an important aspect / structural element of music composition
- Recent advances in
 - sound source spatialization technologies,
 - (digital) audio signal processing,
 - audio interfaces and audio transmission technologies,
 - loudspeaker design, and
 - CPU processing power
- make large-scale multichannel audio environments for sound source spatialization available for music performance
SOUND SOURCE RADIATION

- Radiated sound of musical instruments is characterized by
 - intensity
 - spectral and temporal attributes
 - directivity in space
- Variation in directivity of (real) instruments affects
 - direct sound and reverberant sound field
 - perception of timbre at the listener position
- Sound source interacts with room acoustic environment
- Accurate / convincing sound synthesis requires modeling the directional radiation patterns
 - sound of live-instruments often coexists with electronic sounds
 - reproduction of radiation characteristics of real instruments
 - spatiotemporal additive synthesis
SPHERICAL WAVE SPECTRUM

- Wave field expansion in spherical coordinates

- Any arbitrary and square-integrable function on the 2-sphere can be expanded into spherical harmonics (inverse Fourier transform)

\[x(\theta, \phi) = \sum_{n=0}^{\infty} \sum_{m=-n}^{n} \chi_{nm} Y_n^m(\theta, \phi) \]

- with the expansion coefficients (forward Fourier transform)

\[\chi_{nm} = \int_{S^2} x(\theta, \phi) Y_n^m(\theta, \phi) \, d\Omega \quad \text{with} \quad \int d\Omega = \int_0^{2\pi} d\phi \int_0^\pi \sin \theta d\theta \]

- Provides a general radiation pattern description format
 - independent of the sound field rendering technique later applied
 - compatible and scalable (different playback devices with different reproduction orders)
SPHERICAL WAVE SPECTRUM

- Discrete Spherical Harmonics Transform - notes on sampling the sphere
- **Ideally:** continuous sampling of the sphere
- **Practically:** finite resolution / truncation

\[p(\theta, \phi) \bigg|_{r_0} = \sum_{n=0}^{N} \sum_{m=-n}^{n} \chi_{nm} \bigg|_{r_0} Y_n^m(\theta, \phi) \]

- Calculating the expansion coefficients from \(K \) sensor signals

\[p = C_{SH,N_\alpha} \psi_{SH,N_\alpha} \]

- requires to invert the system of linear equations
 - matrices are often **ill/badly conditioned**
 - regularizations
 - etc …
RADIATION PATTERN SYNTHESIS

- Reproduction of directivity patterns using multi-loudspeaker sources (1997 - today)
 - Warusfel, Caussé, Derogis, Misdariis / Ircam
 - Three-dimensional loudspeaker array: *La Timée*
 - Radiation pattern synthesis by combining canonical base functions

- N-body project (1997)
 - P. Cook, D. Trueman / Princeton University
 - First higher order spherical loudspeaker array for musical applications (“Bomb”, “Boulder”, “R12”)

SOUND SOURCE RADIATION

RADIATION PATTERN SYNTHESIS

- RWTH Aachen
 - 2 way system / dodecahedron (2 x 12 speakers)
- IEM, University of Music and Performing Arts, Graz
 - 2 way system / icosahedron (2 x 20 speakers)
- CNMAT, Univ. of California, Berkeley / Meyer Sound
 - 1 way system / icosahedron (120 speakers)
RADIATION PATTERN ANALYSIS

- **Example:** Radiation synthesis using an 8-loudspeaker array
RADIATION PATTERN SYNTHESIS – WFS

- WFS synthesizes the sound field within an extended listening area
- WFS approach: omnidirectional sound sources
- Synthesis of elementary base functions: subset of spherical / circular harmonics
- Manipulation of directivity characteristics
- Only horizontal dependencies in directivity characteristics can be reproduced
- Finite length of loudspeaker array allows synthesis only within a visibility window
- Finite number of loudspeakers yields aliasing and limits the proper reproduction of wave fronts

CONCLUSION

SpatDIF/GDIF:

- Modeling the spatially varying radiation pattern is essential, when
 - e.g. in contemporary music performance – sound of live played instruments coexists with electronic sounds / virtual sounds

- Wave field expansion in spherical coordinates – useful tool for radiation pattern analysis / synthesis

- SH expansion provides general radiation pattern description format
 - independent of the sound field rendering technique later applied
 - compatible and scalable (different devices with different reproduction orders)
Spatialization Schemata for High-Order Source Directivity (continued...)

SpatDIF/GDIF Meeting, IRCAM May 20-21 2010

Andrew W. Schmeder
andy@cnmat.berkeley.edu

Markus Noisternig
Markus.Noisternig@ircam.fr

CNMAT / UC Berkeley
http://cnmat.berkeley.edu/

IRCAM / CNRS
http://ircam.fr/
Layer Model for Spatial Audio
Layer Model for Spatial Audio

- Transducer signals: 100khz
Layer Model for Spatial Audio

- Transducer signals: 100khz
- Primitive dimensional attributes: 100-1000hz
Layer Model for Spatial Audio

- Transducer signals: 100khz
- Primitive dimensional attributes: 100-1000hz
 - Derived dimensional attributes
Layer Model for Spatial Audio

- Transducer signals: 100khz
- Primitive dimensional attributes: 100-1000hz
 - Derived dimensional attributes
- Perceptual attributes: 10hz
Layer Model for Spatial Audio

- Transducer signals: 100khz
- Primitive dimensional attributes: 100-1000hz
 - Derived dimensional attributes
- Perceptual attributes: 10hz
- Cognitive attributes: 1hz
Layer Model for Spatial Audio

- Transducer signals: 100khz
- Primitive dimensional attributes: 100-1000hz
 - Derived dimensional attributes
- Perceptual attributes: 10hz
- Cognitive attributes: 1hz
 - “Spatialization schemata”
Perception of Directivity
Perception of Directivity

- Is a dynamic perceptual attribute
Perception of Directivity

- Is a dynamic perceptual attribute

 - Vanishes at 0hz.
Perception of Directivity

- Is a dynamic perceptual attribute
 - Vanishes at 0hz.

- Has significant impact on perceptual attributes:
Perception of Directivity

- Is a dynamic perceptual attribute
 - Vanishes at 0hz.
- Has significant impact on perceptual attributes:
 - Immersion (random angle directivity)
Perception of Directivity

- Is a dynamic perceptual attribute
 - Vanishes at 0hz.
- Has significant impact on perceptual attributes:
 - Immersion (random angle directivity)
 - Apparent source width (early reflection structure)
Perception of Directivity

- Is a dynamic perceptual attribute
 - Vanishes at 0hz.

- Has significant impact on perceptual attributes:
 - Immersion (random angle directivity)
 - Apparent source width (early reflection structure)
 - Presence / Clarity (late reflection structure)
Mirror reflection model does not hold!
Perception of reflection locations is non-uniform
Perception of constant angular change (correlated change in reflection structure)
Simplified zone model for beam steering
Spatial Schemata

Source Width

Ensemble Width

Room Width

Scene
Spatial Schemata

- SOURCE

Diagram showing spatial relationships: Source Width, Ensemble Width, Room Width, and Scene.
Spatial Schemata

- SOURCE
- ENSEMBLE
Spatial Schemata

- SOURCE
- ENSEMBLE
- ROOM
Spatial Schemata

- SOURCE
- ENSEMBLE
- ROOM
- PATH
Spatial Schemata

- SOURCE
- ENSEMBLE
- ROOM
- PATH

- The Artistic Play of Spatial Organization: Spatial Attributes, Scene Analysis and Auditory Spatial Schemata (Gary S. Kendall and Mauricio Ardila)
Properties of Schemata
Properties of Schemata

- Highest level of description, e.g.,
Properties of Schemata

- Highest level of description, e.g.,
 - Two coincident sources = one SOURCE
Properties of Schemata

- Highest level of description, e.g.,
 - Two coincident sources = one SOURCE
- Do not necessarily obey logical semantics
Properties of Schemata

- Highest level of description, e.g.,
 - Two coincident sources = one SOURCE
- Do not necessarily obey logical semantics
 - Violations of ROOM, SOURCE, etc.
Properties of Schemata

- Highest level of description, e.g.,
 - Two coincident sources = one SOURCE
- Do not necessarily obey logical semantics
 - Violations of ROOM, SOURCE, etc.
- Anti-physical systems
Schemata for Directivity?
Schemata for Directivity?

- DIRECTION
Schemata for Directivity?

- DIRECTION
 - The face of a source (front, back)
Schemata for Directivity?

- DIRECTION
 - The face of a source (front, back)
 - Implementation by beam-forming, steering
Schemata for Directivity?

- DIRECTION
 - The face of a source (front, back)
 - Implementation by beam-forming, steering

- FLUX
Schemata for Directivity?

- **DIRECTION**
 - The face of a source (front, back)
 - Implementation by beam-forming, steering

- **FLUX**
 - Change in auditory scene other than PATH transform or birth/death event of an element
Schemata for Directivity?

- **DIRECTION**
 - The face of a source (front, back)
 - Implementation by beam-forming, steering

- **FLUX**
 - Change in auditory scene other than PATH transform or birth/death event of an element
 - Implementation by directivity noise, spherical resonance models, etc
DEMO...