Journée Interdisciplinaire Mathématiques – Musique

Music Information Geometry

Arnaud Dessein1,2 and Arshia Cont1

1Institute for Research and Coordination of Acoustics and Music, Paris, France
2Japanese-French Laboratory for Informatics, Tokyo, Japan

IRMA, Strasbourg, April 7th 2011
Outline

1. Introduction
2. Information geometry
3. Proposed framework
4. Obtained results
5. Conclusion
1. **Introduction**
 - A bit of history about science and music
 - Motivations towards information geometry

2. **Information geometry**

3. **Proposed framework**

4. **Obtained results**

5. **Conclusion**
Where do we come from?

- Pythagoras (≈ 570–495 BC): relation between string length and produced sound, Pythagorean tuning.

 There is geometry in the humming of the strings, there is music in the spacing of the spheres.

- Helmholtz (1821–1894): Helmholtz resonator, harmonics and frequency spectrum of sounds.
Where do we come from?

- Pythagoras (~570–495 BC): relation between string length and produced sound, Pythagorean tuning.

 There is geometry in the humming of the strings, there is music in the spacing of the spheres.

- Helmholtz (1821–1894): Helmholtz resonator, harmonics and frequency spectrum of sounds.

- But also indirectly Fourier, Shannon, etc.
What do we need?

<table>
<thead>
<tr>
<th>Representation</th>
<th>Type</th>
<th>Data rate</th>
<th>Low information quantity</th>
<th>High information quantity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Semantic</td>
<td></td>
<td>< 0.1 Hz</td>
<td>Implicit knowledge</td>
<td>Explicit representations</td>
</tr>
<tr>
<td>Symbolic</td>
<td></td>
<td>0.1-25 Hz</td>
<td>Information Generation: Synthesis</td>
<td></td>
</tr>
<tr>
<td>Control</td>
<td></td>
<td>10Hz-1kHz</td>
<td>Information Reduction: Analysis</td>
<td></td>
</tr>
<tr>
<td>Signal</td>
<td></td>
<td>10-100 kHz</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Physical</td>
<td></td>
<td>10-100 kHz</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Figure: Levels of representation of audio, waveform and spectrogram representations.
What do we need?

- Develop a comprehensive framework that allows to quantify, process and represent the information contained in audio signals.
What do we need?

- Develop a comprehensive framework that allows to quantify, process and represent the information contained in audio signals.
- Fill in the gap between signal and symbolic representations.

Figure: Levels of representation of audio, waveform and spectrogram representations.
Outline

1. Introduction

2. Information geometry
 - Background
 - Exponential families

3. Proposed framework

4. Obtained results

5. Conclusion
What is information geometry?

Statistical differentiable manifold.

Under certain assumptions, a parametric statistical model $S = \{p_\xi : \xi \in \Xi\}$ of probability distributions defined on \mathcal{X} forms a differentiable manifold.

Example: $p_\xi(x) = \frac{1}{\sqrt{2\pi\sigma^2}} \exp\left\{-\frac{(x-\mu)^2}{2\sigma^2}\right\}$ for all $x \in \mathcal{X} = \mathbb{R}$, with $\xi = [\mu, \sigma^2] \in \Xi = \mathbb{R} \times \mathbb{R}^+$.

Fisher information metric [Rao, 1945, Chentsov, 1982].

Under certain assumptions, the Fisher information matrix defines the unique Riemannian metric g on S:

$$g_{ij}(\xi) = \int_{x \in \mathcal{X}} \frac{\partial}{\partial i} \log p_\xi(x) \cdot \frac{\partial}{\partial j} \log p_\xi(x) \cdot p_\xi(x) \cdot dx.$$

Dual affine connections [Chentsov, 1982, Amari & Nagaoka, 2000].

Under certain assumptions, there is a unique family of dual affine connections $\{\nabla(\alpha), \nabla(-\alpha)\}$ $\alpha \in \mathbb{R}$ on (S, g) called α-connections.
What is information geometry?

Statistical differentiable manifold.

Under certain assumptions, a parametric statistical model \(S = \{ p_\xi : \xi \in \Xi \} \) of probability distributions defined on \(\mathcal{X} \) forms a differentiable manifold.

- Example: \(p_\xi(x) = \frac{1}{\sqrt{2\pi}\sigma^2} \exp \left\{ -\frac{(x - \mu)^2}{2\sigma^2} \right\} \) for all \(x \in \mathcal{X} = \mathbb{R} \), with \(\xi = [\mu, \sigma^2] \in \Xi = \mathbb{R} \times \mathbb{R}_{++} \).
What is information geometry?

Statistical differentiable manifold.

Under certain assumptions, a parametric statistical model \(S = \{ p_\xi : \xi \in \Xi \} \) of probability distributions defined on \(\mathcal{X} \) forms a differentiable manifold.

- Example: \(p_\xi(x) = \frac{1}{\sqrt{2\pi}\sigma^2} \exp\left\{ -\frac{(x - \mu)^2}{2\sigma^2} \right\} \) for all \(x \in \mathcal{X} = \mathbb{R} \), with \(\xi = [\mu, \sigma^2] \in \Xi = \mathbb{R} \times \mathbb{R}^+ \).

Fisher information metric [Rao, 1945, Chentsov, 1982].

Under certain assumptions, the Fisher information matrix defines the unique Riemannian metric \(g \) on \(S \): \(g_{ij}(\xi) = \int_{x \in \mathcal{X}} \partial_i \log p_\xi(x) \cdot \partial_j \log p_\xi(x) \cdot p_\xi(x) \cdot dx \).
What is information geometry?

Statistical differentiable manifold.

Under certain assumptions, a parametric statistical model $S = \{p_\xi : \xi \in \Xi\}$ of probability distributions defined on \mathcal{X} forms a differentiable manifold.

- Example: $p_\xi(x) = \frac{1}{\sqrt{2\pi\sigma^2}} \exp\left\{-\frac{(x - \mu)^2}{2\sigma^2}\right\}$ for all $x \in \mathcal{X} = \mathbb{R}$, with $\xi = [\mu, \sigma^2] \in \Xi = \mathbb{R} \times \mathbb{R}^+$.

Fisher information metric [Rao, 1945, Chentsov, 1982].

Under certain assumptions, the Fisher information matrix defines the unique Riemannian metric g on S: $g_{ij}(\xi) = \int_{x \in \mathcal{X}} \partial_i \log p_\xi(x) \cdot \partial_j \log p_\xi(x) \cdot p_\xi(x) \cdot dx$.

Dual affine connections [Chentsov, 1982, Amari & Nagaoka, 2000].

Under certain assumptions, there is a unique family of dual affine connections $\{\nabla^{(\alpha)}, \nabla^{-(-\alpha)}\}_{\alpha \in \mathbb{R}}$ on (S, g) called α-connections.
Exponential family.

\[p_\theta(x) = \exp (\theta^T T(x) - F(\theta) + C(x)) \text{ for all } x \in X. \]

- \(\theta \): natural parameters, vector belonging to a convex open set \(\Theta \).
- \(F \): log-normalizer, real-valued, strictly convex smooth function on \(\Theta \).
- \(C \): carrier measure, real-valued function on \(X \).
- \(T \): sufficient statistic, vector-valued function on \(X \).
How to use information geometry from a computational viewpoint?

Exponential family.

\[p_\theta(x) = \exp(\theta^T T(x) - F(\theta) + C(x)) \] for all \(x \in \mathcal{X} \).

Figure: A taxonomy of exponential families.
How to use information geometry from a computational viewpoint?

Exponential family.

\[p_\theta(x) = \exp(\theta^T T(x) - F(\theta) + C(x)) \text{ for all } x \in \mathcal{X}. \]

- We consider a statistical manifold \(S = \{ p_\theta : \theta \in \Theta \} \) equipped with \(g \) and the dual exponential and mixture connections \(\nabla^{(1)} \) and \(\nabla^{(-1)} \).
How to use information geometry from a computational viewpoint?

Exponential family.

\[p_{\theta}(x) = \exp \left(\theta^T T(x) - F(\theta) + C(x) \right) \text{ for all } x \in \mathcal{X}. \]

- We consider a statistical manifold \(S = \{ p_{\theta} : \theta \in \Theta \} \) equipped with \(g \) and the dual exponential and mixture connections \(\nabla^{(1)} \) and \(\nabla^{(-1)} \).
- \((S, g, \nabla^{(1)}, \nabla^{(-1)}) \) possesses two dual affine coordinate systems, natural parameters \(\theta \) and expectation parameters \(\eta = \nabla F(\theta) \).
How to use information geometry from a computational viewpoint?

Exponential family.

\[p_\theta(x) = \exp\left(\theta^T T(x) - F(\theta) + C(x)\right) \text{ for all } x \in \mathcal{X}. \]

- We consider a statistical manifold \(S = \{p_\theta : \theta \in \Theta\} \) equipped with \(g \) and the dual exponential and mixture connections \(\nabla^{(1)} \) and \(\nabla^{(-1)} \).
- \((S, g, \nabla^{(1)}, \nabla^{(-1)})\) possesses two dual affine coordinate systems, natural parameters \(\theta \) and expectation parameters \(\eta = \nabla F(\theta) \).
- Dually flat geometry, Hessian structure \((g = \nabla^2 F)\), generated by the potential \(F \) together with its conjugate potential \(F^* \) defined by the Legendre-Fenchel transform: \(F^*(\eta) = \sup_{\theta \in \Theta} \theta^T \eta - F(\theta) \), which verifies \(\nabla F^* = (\nabla F)^{-1} \) so that \(\theta = \nabla F^*(\eta) \).
How to use information geometry from a computational viewpoint?

Exponential family.

\[p_\theta(x) = \exp \left(\theta^T T(x) - F(\theta) + C(x) \right) \text{ for all } x \in \mathcal{X}. \]

- We consider a statistical manifold \(\mathcal{S} = \{ p_\theta : \theta \in \Theta \} \) equipped with \(g \) and the dual exponential and mixture connections \(\nabla^{(1)} \) and \(\nabla^{(-1)} \).
- \((\mathcal{S}, g, \nabla^{(1)}, \nabla^{(-1)})\) possesses two dual affine coordinate systems, natural parameters \(\theta \) and expectation parameters \(\eta = \nabla F(\theta) \).
- Dually flat geometry, Hessian structure \((g = \nabla^2 F) \), generated by the potential \(F \) together with its conjugate potential \(F^* \) defined by the Legendre-Fenchel transform: \(F^*(\eta) = \sup_{\theta \in \Theta} \theta^T \eta - F(\theta) \), which verifies \(\nabla F^* = (\nabla F)^{-1} \) so that \(\theta = \nabla F^*(\eta) \).
- Generalizes the self-dual Euclidean geometry, with notably two canonically associated Bregman divergences \(B_F \) and \(B_{F^*} \) instead of the self-dual Euclidean distance, but also dual geodesics, a generalized Pythagorean theorem and dual projections.
How to use information geometry from a computational viewpoint?

Exponential family.

\[p_{\theta}(x) = \exp(\theta^T T(x) - F(\theta) + C(x)) \text{ for all } x \in \mathcal{X}. \]

Bregman divergence.

\[B_F(\theta, \theta') = F(\theta) - F(\theta') - (\theta - \theta')^T \nabla F(\theta'). \]
How to use information geometry from a computational viewpoint?

Exponential family.

\[p_\theta(x) = \exp(\theta^T T(x) - F(\theta) + C(x)) \text{ for all } x \in \mathcal{X}. \]

Bregman divergence.

\[B_F(\theta, \theta') = F(\theta) - F(\theta') - (\theta - \theta')^T \nabla F(\theta'). \]

- Canonical divergences of dually flat spaces, “bijection” with exponential families [Amari & Nagaoka, 2000, Banerjee et al., 2005]:
 \[D_{KL}(p_\xi \parallel p_{\xi'}) = B_F(\theta' \parallel \theta) = B_{F^*}(\eta \parallel \eta'). \]
How to use information geometry from a computational viewpoint?

Exponential family.

\[p_\theta(x) = \exp \left(\theta^T T(x) - F(\theta) + C(x) \right) \] for all \(x \in \mathcal{X} \).

Bregman divergence.

\[\mathcal{B}_F(\theta, \theta') = F(\theta) - F(\theta') - (\theta - \theta')^T \nabla F(\theta') \]

- Canonical divergences of dually flat spaces, “bijection” with exponential families [Amari & Nagaoka, 2000, Banerjee et al., 2005]:
 \[D_{KL}(p_\xi \parallel p_{\xi'}) = \mathcal{B}_F(\theta' \parallel \theta) = \mathcal{B}_{F^*}(\eta \parallel \eta') \]
- No symmetry nor triangular inequality in general, but an information-theoretic interpretation.
How to use information geometry from a computational viewpoint?

Exponential family.

\[p_\theta(x) = \exp (\theta^T T(x) - F(\theta) + C(x)) \text{ for all } x \in \mathcal{X}. \]

Bregman divergence.

\[B_F(\theta, \theta') = F(\theta) - F(\theta') - (\theta - \theta')^T \nabla F(\theta'). \]

- Canonical divergences of dually flat spaces, “bijection” with exponential families [Amari & Nagaoka, 2000, Banerjee et al., 2005]:
 \[D_{KL}(p_{\xi} \parallel p_{\xi'}) = B_F(\theta' \parallel \theta) = B_{F^*}(\eta \parallel \eta'). \]

- No symmetry nor triangular inequality in general, but an information-theoretic interpretation.

 - Centroid computation and hard clustering (k-means).
 - Parameter estimation and soft clustering (expectation-maximization).
 - Proximity queries in ball trees (nearest-neighbors and range search).
Outline

1. Introduction

2. Information geometry

3. Proposed framework
 - General architecture
 - Sound descriptors modeling
 - Temporal modeling

4. Obtained results

5. Conclusion
How to design an audio system based on information geometry?

Scheme:

1. Represent the incoming audio stream with short-time sound descriptors d_j.
2. Model these descriptors as probability distributions p_{θ_j} from a given exponential family.
3. Use the framework of computational information geometry on these distributions.

Figure: Schema of the general architecture of the system.
How to design an audio system based on information geometry?

- **Scheme:**
 1. Represent the incoming audio stream with short-time sound descriptors d_j.
 2. Model these descriptors as probability distributions p_{θ_j} from a given exponential family.
 3. Use the framework of computational information geometry on these distributions.

- In particular, it allows to define the notion of similarity in an information setup through divergences.

Figure: Schema of the general architecture of the system.
How to design an audio system based on information geometry?

Scheme:

1. Represent the incoming audio stream with short-time sound descriptors d_j.
2. Model these descriptors as probability distributions p_{θ_j} from a given exponential family.
3. Use the framework of computational information geometry on these distributions.

- In particular, it allows to define the notion of similarity in an information setup through divergences.
- Important need for temporal modeling.

Figure: Schema of the general architecture of the system.
How to design an audio system based on information geometry?

- Scheme:
 1. Represent the incoming audio stream with short-time sound descriptors d_j.
 2. Model these descriptors as probability distributions p_{θ_j} from a given exponential family.
 3. Use the framework of computational information geometry on these distributions.

- In particular, it allows to define the notion of similarity in an information setup through divergences.

- Important need for temporal modeling.

- Potential applications [Cont et al., 2011]:
 - Audio content analysis.
 - Segmentation of audio streams.
 - Automatic structure discovery of audio signals.
 - Sound processing and synthesis.

Figure: Schema of the general architecture of the system.
How to model sounds?

- Computation of a sound descriptor d_j:
 - Fourier or constant-Q transforms for information on the spectral content.
 - Mel-frequency cepstral coefficients for information on the timbre.
 - Many other possibilities.

Figure: Sound descriptors modeling.
How to model sounds?

- Computation of a sound descriptor d_j:
 - Fourier or constant-Q transforms for information on the spectral content.
 - Mel-frequency cepstral coefficients for information on the timbre.
 - Many other possibilities.
- Modeling with a probability distribution p_{θ_j} from an exponential family:
 - Categorical distributions.
 - Many other possibilities.

Figure: Sound descriptors modeling.
How to take time into account?

- Model formation: from signal to symbol.
 - Assumption of quasi-stationary audio chunks.
 - Change detection adapted from CuSum [Basseville & Nikiforov, 1993].

![Diagram of model formation at time t.](image)

Figure: Model formation at time t.
How to take time into account?

- **Model formation:** from signal to symbol.
 - Assumption of quasi-stationary audio chunks.
 - Change detection adapted from CuSum [Basseville & Nikiforov, 1993].

 ![Figure: Model formation at time t.](image)

- **Factor oracle:** from symbol to syntax (and from genetics to music!).
 - Forward transitions: original sequence factors.
 - Backward links: suffix relations, common context.

 ![Figure: Factor oracle of the word abbbaaab.](image)
Outline

1. Introduction

2. Information geometry

3. Proposed framework

4. Obtained results
 - Audio segmentation
 - Music similarity analysis
 - Musical structure discovery
 - Query by similarity
 - Audio recombination by concatenative synthesis
 - Computer-assisted improvisation

5. Conclusion
Audio segmentation

Figure: Segmentation of the 1st Piano Sonate, 1st Movement, 1st Theme, Beethoven.
Music similarity analysis

Figure: Similarity analysis of the 1st Piano Sonate, 3rd Movement, Beethoven.
Musical structure discovery

Figure: Structure discovery of the 1st Piano Sonate, 3rd Movement, Beethoven.
Query by similarity

Figure: Query by similarity of the 1st Theme over the entire 1st Piano Sonate, 1st Movement, Beethoven.
Audio recombination by concatenative synthesis

Figure: Audio recombination of African drums by concatenative synthesis of congas.
Computer-assisted improvisation

Figure: Computer-assisted improvisation, Fabrizio Cassol and Philippe Leclerc.
What we (don’t) have

Summary and perspectives.

- Representations.
- Descriptors modeling.
- Temporal modeling.
- Temporality of events.
What we (don’t) have

Summary and perspectives.

- Representations.
- Descriptors modeling.
- Temporal modeling.
- Temporality of events.

- Many possibilities.
- Combinations of descriptors.
- Complex representations.
What we (don’t) have

Summary and perspectives.
- Representations.
- Descriptors modeling.
- Temporal modeling.
- Temporality of events.
- Exponential families and Bregman divergences.
- Mixture models of a given exponential family.
- Other geometries, divergences, metrics.
What we (don’t) have

Summary and perspectives.
- Representations.
- Descriptors modeling.
- Temporal modeling.
- Temporality of events.

- On-line segmentation and factor oracle.
- On-line clustering and equivalence between symbols.
- Overlap between symbols and other temporal models.
What we (don’t) have

Summary and perspectives.

- Representations.
- Descriptors modeling.
- Temporal modeling.
- Temporality of events.

- Assumption of quasi-stationarity.
- Non-stationarity modeling.
- Time series.
What we (don’t) have

Summary and perspectives.

- Representations.
- Descriptors modeling.
- Temporal modeling.
- Temporality of events.

- Resources on IG: http://imtr.ircam.fr/imtr/Music_Information_Geometry
- National research group: IRCAM, Ecole Polytechnique, Thales, etc.
- Brillouin seminar:
 http://www.informationgeometry.org/Seminar/seminarBrillouin.html
- IGAIA 2012.
What we (don’t) have

Summary and perspectives.

- Representations.
- Descriptors modeling.
- Temporal modeling.
- Temporality of events.

- Resources on IG: http://imtr.ircam.fr/imtr/Music_Information_Geometry
- National research group: IRCAM, Ecole Polytechnique, Thales, etc.
- Brillouin seminar:
 http://www.informationgeometry.org/Seminar/seminarBrillouin.html
- IGAIA 2012.

- Thank you very much for your attention! Questions?
- This work was supported by a doctoral fellowship from the UPMC (EDITE) and by a grant from the JST-CNRS ICT (Improving the VR Experience).

Clustering with Bregman divergences.

Detection of abrupt changes: Theory and application.

Fast nearest neighbor retrieval for Bregman divergences.

Efficient Bregman range search.

Chentsov, N. N. (1982).

